

Mark Scheme (Results)

October 2021

Pearson Edexcel International Advanced Subsidiary Level in Physics (WPH15) Paper 01 Thermodynamics, Radiation, Oscillations and Cosmology

Question Number	Answer	Mark
1	C is the correct answer	(1)
	A, B, D are incorrect as C is the definition of a standard candle.	
2	B is the correct answer	(1)
	A is not the correct answer as it is true to say that he electric force between the nuclei is repulsive.	
	C is not the correct answer as it is true to say that the gravitational force and the electric force both increase.	
	D is not the correct answer as it is true to say that the gravitational force between the nuclei is attractive.	
3	D is the correct answer	(1)
	A, B, C are incorrect as $T = 2\pi \sqrt{\frac{\ell}{g}}$ and $g_{\text{moon}} = \frac{g_{\text{Earth}}}{6}$	
4	D is the correct answer	(1)
	A is not the correct answer as alpha radiation would not penetrate the body	
	B is not the correct answer as alpha radiation is not very penetrating	
	C is not the correct answer as gamma radiation is not very ionising	
5	C is the correct answer	(1)
	A is incorrect as the frequency has been substituted for the period	
	B is incorrect as period has been substituted for frequency and the half amplitude	
	value used	
(D incorrect as half amplitude has been substituted	(1)
6	C is the correct answer A, B and D re incorrect as $\lambda = \frac{\ln 2}{t_{1/2}}$ and this has been substituted incorrectly in	(1)
	72	
	the expression $\frac{\Delta N}{\Delta t} = (-)\lambda N$	
7	D is the correct answer	(1)
	A is incorrect as this is the binding energy per nucleon of ³ He	
	B is incorrect as this is the energy required to remove a single nucleon	
	C is incorrect as this is the energy required to remove 2 nucleons	
8	D is the correct answer	(1)
	A is incorrect as stars do not evolve along the main sequence	
	B is incorrect as white dwarf stars do not evolve into main sequence stars	
	C is incorrect as stars do not evolve along the main sequence	
9	D is the correct answer	(1)
	A is incorrect as mass of stars increases along the main sequences	
	B is incorrect as on an HR-diagram the temperature scale is an reverse scale	
	C is incorrect as white dwarfs have smaller masses than main sequence stars	
10	D is the correct answer	(1)
	A, B and C are incorrect because $T = \frac{2\pi}{\omega}$ and $\omega = \sqrt{\frac{a}{x}}$	

Question Number	Answer	Mark
11	Use of $I = \frac{L}{4\pi d^2}$ (1)	
	$d = 8.1 \times 10^{16} \mathrm{m} \tag{1}$	2
	Example of calculation $d = \sqrt{\frac{L}{4\pi I}} = \sqrt{\frac{8.94 \times 10^{27} \text{ W}}{4\pi \times 1.09 \times 10^{-7} \text{ W m}^{-2}}} = 8.08 \times 10^{16} \text{ m}$	
	Total for question 11	2

Question Number	Answer		Mark
12	Use of $\Delta E = mc\Delta\theta$	(1)	
	Use of $P = \frac{\Delta E}{\Delta t}$	(1)	
	Use of $\Delta E = mL$	(1)	
	m = 0.189 kg	(1)	4
	Example of calculation		
	$P = \frac{0.855 \text{ kg} \times 4190 \text{ J kg}^{-1} \text{ K}^{-1} \times (100 - 21.5) \text{ K}}{115 \text{ s}} = 2.45 \times 10^3 \text{ W}$		
	$2.45 \times 10^{3} \text{W} \times 175 \text{ s} = m \times 2.26 \times 10^{6} \text{ J kg}^{-1}$		
	$\therefore m = \frac{2.45 \times 10^3 \text{W} \times 175 \text{ s}}{2.26 \times 10^6 \text{ J kg}^{-1}} = 0.189 \text{ kg}$		
	Total for question 12		4

Question Number	Answer		Mark
13(a)	Mass difference calculated	(1)	
	Conversion from u to kg	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	$\Delta E = 5.53 \text{ (MeV)}$	(1)	4
	For full marks to be awarded some working should be shown – a bald answer scores zero. "Some working" must include at least two of the steps to the answer.		
	Example of calculation		
	Mass difference = $(228.02873 - 224.02021 - 4.00260) u = 5.92 \times 10^{-3} u$		
	Mass difference = $5.92 \times 10^{-3} \text{ u} \times 1.66 \times 10^{-27} \text{ kg u}^{-1} = 9.83 \times 10^{-30} \text{ kg}$		
	$\Delta E = (3.00 \times 10^8 \text{ m s}^{-1})^2 \times 9.83 \times 10^{-30} \text{ kg} = 8.85 \times 10^{-13} \text{ J}$		
	$\Delta E = \frac{8.85 \times 10^{-13} \text{J}}{1.60 \times 10^{-13} \text{J MeV}^{-1}} = 5.53 \text{ MeV}$		
13(b)	(Mathematical) statement of momentum conservation	(1)	
	Use of $E_{\mathbf{k}} = \frac{p^2}{2m}$	(1)	
	Or use of $E_k = \frac{1}{2}mv^2$ and $p = mv$	(1)	
	(Mathematical) statement of energy conservation	(1)	
	$E_{\rm k}$ =5.4 MeV and statement is correct	(1)	4
	$\frac{\text{Example of calculation}}{p_{\alpha} = -p_{\text{Ra}}}$		
	$2m_{\alpha} E_{\alpha} = 2m_{Ra} E_{Ra}$		
	$E_{Ra} = \frac{m_{\alpha}}{m_{Ra}} \times E_{\alpha}$		
	$E_{\alpha} + E_{Ra} = 5.5 \text{ MeV}$		
	$E_{\alpha} + \frac{m_{\alpha}}{m_{Ra}} \times E_{\alpha} = 5.5 \text{ MeV}$		
	$E_{\alpha} = \frac{m_{Ra}}{m_{Ra} + m_{\alpha}} \times 5.5 \text{ MeV}$		
	So $E_k = \frac{224}{228} \times 5.53 \text{ MeV} = 5.43 \text{ MeV}$		
	Total for question 13		8

Question Number	Answer		Mark
14(a)	Use of $pV = NkT$	(1)	
	Temperature conversion	(1)	
	$N = 6.02 \times 10^{23}$	(1)	3
	Example of calculation		
	$N = \frac{pV}{kT} = \frac{1.01 \times 10^5 \text{ Pa} \times 0.0241 \text{ m}^3}{1.38 \times 10^{-23} \text{J K}^{-1} \times (20.0 + 273) \text{ K}} = 6.02 \times 10^{23}$		
14(b)	Use of $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$	(1)	
	Use of 60.5 %	(1)	
	Ratio = 2.7 (Do not award MP3 if a value for either mass has been assumed)	(1)	3
	Example of calculation		
	$\frac{1}{2}m_1\langle c_1^2\rangle = \frac{1}{2}m_2\langle c_2^2\rangle$ $\therefore \frac{m_1}{m_2} = \frac{\langle c_2^2\rangle}{\langle c_1^2\rangle}$		
	$\frac{\langle c_C^2 \rangle}{\langle c_m^2 \rangle} = 0.605^2 = 0.366$		
	$\frac{m_c}{m_m} = \frac{\langle c_m^2 \rangle}{\langle c_c^2 \rangle} = \frac{1}{0.366} = 2.73$		
	Total for question 14		6

Question Number	Answer						Mark
*15			udent's ability to show		d logically		
	Marks are aw shows lines o		icative content and for	how the answ	er is structured and		
	The following lines of reaso		how the marks should	l be awarded for	or structure and		
					marks awarded for answer and sustained oning		
	with linkage		t and logical structure astained lines of hroughout		2		
	linkages and	l lines of reas	ured with some oning between points and is		0	_	
		warded is the	e sum of marks for ind	icative content	and the marks for]	
	structure and	lines of reaso	oning				
	IC points	IC mark	Max linkage mark	Max final mark			
	6	4	2	6		(1)	
	5	3	2	5		(1)	
	4	3	1	4		(1)	
	3	2	1	3		(1)	
	2	2	0	2		` ′	
	1	1	0	1		(1)	
	0	0	0	0		(1)	6
	IC2 (So) n IC3 (Suffic IC4 And al IC5 Gravit	is a very high uclei/protons cient) to overe llow nuclei/pr ational forces	n temperature (in the contract have a high kinetic encome electrostatic reportorous to get close encome produce a very high contract is high enough to su	ergy Ilsion ugh to fuse lensity (in the	core)		
	Total for que	estion 15					6

Question Number	Answer				Mark
16(a)	H _α / nm	Point			
	656.2837	В			
	656.2797	С			
	656.2757	A		(1)	1
16(b)	MAX 2 from:				
	shorter wavelength [Acc "blue shift" for "shorter	cept "point A" for " wavelength"]	ard the Earth is received with a edge moving toward the Earth" and	(1)	
	_	ept "point B" for "e	ay from the Earth is received with a edge moving away from the Earth"	(1)	
			between the Earth and different d if A and B incorrectly linked to	(1)	2
	[Reference to Doppler e	ffect can score max	: 1]	(*)	-
16(c)	Use of $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$ with $\lambda =$		-	(1)	
	Use of $v = \frac{2\pi r}{r}$ to calcul			(1)	
	T Conversion of T into day			(1)	
	T = 27.8 days which is a		nys	(1)	
	OR				
	Conversion of $T = 28$ da	ys into seconds		(4)	
	Use of $v = \frac{2\pi r}{T}$ to calcul	ate $v [1820 \text{ m s}^{-1}]$		(1)	
	Use of $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$ with $\lambda =$	656.2797 nm		(1)	
	$v = 1830 \text{ m s}^{-1} \text{ which is}$		0 m s ⁻¹	(1) (1)	
	OR				
	Conversion of $T = 28$ da	•		745	
	Use of $v = \frac{2\pi r}{T}$ to calculate $\Delta \lambda = \frac{\Delta \lambda}{r}$			(1)	
	Use of $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$ with $\lambda =$			(1)	
	$\Delta \lambda = 3.98 \times 10^{-3} \mathrm{m \ whic}$	h is approximately	$4.0 \times 10^{-3} \mathrm{m}$	(1)	
			rison of calculated value of v/c from $\frac{\Delta\lambda}{c}$	(1)	4
	T = 28 days and calculate	ed value of V/C ifor	λ		
	Example of calculation	_			
			$\frac{6 - 656.2797) \text{ nm}}{6.2797 \text{ nm}} = 1828 \text{ m s}^{-1}$		
	$T = \frac{2\pi r}{v} = \frac{2\pi \times 7.0 \times 1}{1828 \text{ m}}$		0 ⁶ s		
	$T = \frac{2.41 \times 10^6 \text{ s}}{86400 \text{ s day}^{-1}} = 2$	27.8 days			
	Total for question 16				7

Question Number	Answer		Mark
17(a)	Find (angular) displacement of the star (as Earth moves around the Sun) over a 6 month period Or find (angular) displacement of the star (as Earth moves around the Sun) over a		
	diameter of the Earth's orbit	(1)	
	Measurements are made against the background of (more) distant stars	(1)	
	Radius/diameter of the Earth's orbit about the Sun must be known/measured (to calculate the distance to the star)	(1)	3
	[For full credit, it must be clear that angles are being measured]		
	[Marks can be obtained from an annotated diagram]		
	E_1 θ_1 to fixed distant stars θ_2		
17(b)	[Accept the symmetrical diagram seen in many textbooks]		
	EITHER Distant galaxies are receding	(1)	
	The velocity of recession can be calculated from the redshift	(1)	
	A graph of recessional velocity against distance has a gradient equal to the Hubble		
	constant H_0	(1)	
	The age of the universe is $1/H_0$	(1)	
	OR	(4)	
	Distant galaxies are receding	(1)	
	The redshift can be calculated	(1)	
	A graph of redshift against distance has a gradient equal to H_0/c	(1)	
	The age of the universe is $1/H_0$	(1)	4
	Total for question 17		7

Question Number	Answer		Mark
18(a)(i)	Use of $\Delta F = k\Delta x$	(1)	
	$k = 346 \text{ (N m}^{-1})$	(1)	2
	Example of calculation		
	$k = \frac{15.0 \text{ kg} \times 9.81 \text{ m s}^{-2}}{0.425 \text{ m}} = 346.2 \text{ N m}^{-1}$		
18(a)(ii)	(When the cradle is displaced):		
	there is a (resultant) acceleration/force that is proportional to the displacement from the equilibrium position	(1)	
	and (always) acting towards the equilibrium position	(1)	2
	(An equation with symbols defined correctly is a valid response for both marks For equilibrium position accept: undisplaced point/position or fixed point/position or central point/position)		
18(a)(iii)	Use of $T = 2\pi \sqrt{\frac{m}{k}}$	(1)	
	T = 1.1 s	(1)	2
	Example of calculation		
	$T = 2\pi \sqrt{\frac{(7.25 + 2.55) \text{ kg}}{350 \text{ N m}^{-1}}} = 1.05 \text{ s}$		
18(b)	The maximum load the spring can support when oscillating is less than the maximum load the spring supports when in equilibrium.	(1)	
	As when the mass is below the equilibrium position the force exerted on the spring is greater than the force at equilibrium.	(1)	2
	Total for question 18		8

Question	Answer		Mark
Number 19(a)(i)	Top line correct	(1)	
17(11)(1)	Bottom line correct	(1)	2
	Example of calculation		
	$\frac{1}{60}$ Co $\rightarrow \frac{60}{28}$ Ni $+ \frac{0}{1}$ $\beta^{-} + \frac{0}{0}$ $\overline{\nu}_{e}$		
19(a)(ii)	The mass of the Ni nucleus is much larger than total mass of the other two particles	(1)	1
19(b)	ln2	(1)	
	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$, ,	
	Use of $A = A_0 e^{-\lambda t}$	(1)	
	t = 6.0 (years)	(1)	2
		(1)	3
	Example of calculation		
	ln2		
	$\lambda = \frac{\ln 2}{5.27 \times 3.16 \times 10^7 \text{ s}} = 4.16 \times 10^{-9} \text{ s}^{-1}$		
	$1.85 \times 10^{14} \text{Bq} = 4.07 \times 10^{14} \text{ Bq e}^{-4.16 \times 10^{-9} \times t}$		
	$ \therefore t = \frac{\ln\left(\frac{4.07 \times 10^{14} \text{ Bq}}{1.85 \times 10^{14} \text{ Bq}}\right)}{4.16 \times 10^{-9} \text{ s}^{-1}} = 1.886 \times 10^8 \text{ s} $		
	$\therefore t = \frac{1.894 \times 10^8 \text{ s}}{3.16 \times 10^7 \text{ s year}^{-1}} = 5.996 \text{ years}$		
19(c)	Required % transmission calculated	(1)	
	Distance <i>x</i> read from graph for required transmission	(1)	
	x = 1.1 cm, so shielding would be insufficient	(1)	
	OR		
	Required % transmission calculated	(1)	
	% transmission read from graph for 1.0 cm shielding	(1)	
	% transmission $\approx 33\%$, so shielding would be insufficient	(1)	3
	Example of calculation		
	Required % transmission $\leq \frac{1.2 \times 10^{14} \text{ Bq}}{4.0 \times 10^{14} \text{ Bq}} \times 100\% = 30 \%$		
	4.0×10^{14} Bq From graph, for required % transmission thickness of shielding = 1.1 cm,		
	Total for question 19		9

Question Number	Answer		Mark
20(a)	A main sequence star is fusing hydrogen (into helium) in the core of the star	(1)	1
20(b)(i)	Use of $L = A\sigma T^4$ and $A = 4\pi r^2$	(1)	
	$r = 6.94 \times 10^8 (\text{m})$	(1)	2
	Example of calculation		
	$r = \sqrt{\frac{L}{4\pi\sigma T^4}} = \sqrt{\frac{3.83 \times 10^{26} \text{ W}}{4\pi \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} (5780 \text{ K})^4}} = 6.94 \times 10^8 \text{ m}$		
20(b)(ii)	Use of $L = A\sigma T^4$ and $A = 4\pi r^2$	(1)	
	Use of $\lambda_{max}T = 2.898 \times 10^{-3} \mathrm{m}\mathrm{K}$		
	$\lambda_{max} = 9.8 \times 10^{-7}$ (m) (ecf value of r from (i))	(1)	
	Example of calculation	(1)	3
	$T = \sqrt[4]{\frac{L}{4\pi r^2 \sigma}} = \sqrt[4]{\frac{1600 \times 3.83 \times 10^{26} \text{ W}}{4\pi (150 \times 7.0 \times 10^8 \text{ m})^2 \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}}}$ $= 2972 \text{ K}$		
	$\lambda_{max} = \frac{2.898 \times 10^{-3} \text{ m K}}{2972 \text{ K}} = 9.75 \times 10^{-7} \text{ m}$		
20(b)(iii)	λ_{max} is not in the wavelength range for red light $\mathbf{Or}\ \lambda_{max}$ is in the infrared wavelength range	(1)	
	There is a range of wavelengths emitted around the value of λ_{max}	(1)	
	The most intense region of the visible spectrum will be red light (dependent upon MP2)	(1)	3
	[Accept annotated sketches of the black body curve]		
20(c)	(The mass of the Sun decreases and so) the gravitational force exerted on the planet decreases	(1)	
	The gravitational force provides a centripetal force	(1)	
	$F = m\omega^2 r$, ω decreases and so T must increase	(1)	
	OR	` '	
	(The mass of the Sun decreases and so) the gravitational force exerted on the planet decreases	(1)	
	The gravitational force provides a centripetal force	(1)	
	$F = \frac{mv^2}{r}$, v will decrease and so T must increase	(1)	
	OR		
	Equate $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$	(1)	
	Derive expression for T	(1)	
	Deduce that T will increase	(1)	3
	Total for question 20		12

Question Number	Answer		Mark
21(a)(i)	Use of $V_{\text{grav}} = -\frac{GM}{r}$	(1)	
	$V_{\text{grav}} = (-) 5.53 \times 10^7 (\text{J kg}^{-1})$	(1)	2
	Example of calculation		
	$V_{\text{grav}} = -\frac{6.67 \times 10^{-11} \text{N m}^2 \text{kg}^{-2} \times 5.98 \times 10^{24} \text{kg}}{\left(6.36 \times 10^6 + 8.5 \times 10^5\right) \text{m}} = -5.532 \times 10^7 \text{J kg}^{-1}$		
21(a)(ii)	Use of $\Delta V \times m$	(1)	
	$\Delta E_{grav} = 3.7 \times 10^{10} \mathrm{J}$	(1)	2
	Example of calculation		
	$\Delta E_{\text{grav}} = (-5.53 - (-6.27)) \times 10^7 \text{J kg}^{-1} \times 4990 \text{kg} = 3.69 \times 10^{10} \text{J}$		
21(b)	Equate $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$	(1)	
	Substitute for ω using $\omega = \frac{2\pi}{T}$	(1)	
	Use of $T^2 = \frac{4\pi^2 r^3}{GM}$	(1)	
	T = 6090 s Or T = 1.69 hours	(1)	
	Number of orbits in 1 day = 14.2, so claim is not valid	(1)	
	OR		
	Equate $F = \frac{GMm}{r^2}$ with $F = \frac{mv^2}{r}$	(1)	
	Substitute for v using $v = \frac{2\pi r}{T}$	(1)	
	Use of $T^2 = \frac{4\pi^2 r^3}{GM}$	(1)	
	$T = 6090 \text{ s } \mathbf{Or} \ T = 1.69 \text{ hours}$	(1)	
	Number of orbits in 1 day = 14.2, so claim is not valid	(1)	5
	Example of calculation		
	$\frac{GMm}{r^2} = m\omega^2 r$		
	$\therefore T = 2\pi \times \sqrt{\frac{r^3}{GM}} = 2\pi \times \sqrt{\frac{(6.36 \times 10^6 \text{ m} + 8.5 \times 10^5 \text{ m})^3}{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 5.98 \times 10^{24} \text{ kg}}} = 6091 \text{ s}$		
	$\therefore T = \frac{6090 \text{ s}}{(60 \times 60) \text{ s hour}^{-1}} = 1.69 \text{ hours}$		
	Number of orbits in 1 day = $\frac{24 \text{ hours}}{1.69 \text{ hours}} = 14.2$		

21(c)	Advantage:	satellite can cover more of the Earth's surface Or satellite passes close to the polar regions Or better resolution, as satellite closer to the Earth	(1)	
	Disadvantage:	satellite has to be tracked in the sky Or satellite data cannot be received continuously Or cannot provide continuous viewing of a single location	(1)	2
	Total for question 21			11